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ABSTRACT

Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create
an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the
animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane.

One inspiration for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends tc
walk around the sculpture, viewing it from manyfeliént angles.

A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes.
Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path.

In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which
map to the horizontal and vertical screen dimensions, respecti@hge, a grand tour is specified by a path of pairs of
orthonormal projection vectors.

This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for con-

structing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a hatural Rieman
nian geometry

1.0 Some terminology

We define and discuss a number of key concepts that will be used in this paper
Definition: A 2-planein R"is any 2-dimensional linear subspacé8f

Note that in our usage, every 2-plane contains the @igim".

Definition: A 2-frame in R" is any ordered pair of orthonormal vector®ih
Note that any 2-frame uniquely determines a 2-plane.

Notation: Supposes andw are orthonormal vectors R". Then the 2-frame determined yandw (in that order) will
be denoted by(w).

Notation: The 2-plane determined by the 2-frame Fv,w) will be denoted by span(F) or sgem).

Definition: The Grassmann manifold or Grassmannian, G, , of 2-planes irR" is the topological space each point of
which represents a distinct 2-plane i R



Definition: The Stiefelmanifold V; , of 2-frames irR" is the topological space each point of which represents a distinct
2-frame in R.

Note that G , and \, ,, are each locally Euclidean of dimensions 2n-4 and 2n-3 respectwelyeach is naturally endowed
with an intrinsic metric, or distance function (arising from a natural Riemannian metric structure). Thus it makes sense to dis-
cuss the distance between any two points of either of these spaces.

Notation: The distance between points x and y of a metric space M will be denoted by d(x, y).

Definition: A subset X of a metric space M is calldehseif for any point mJ M and anyd > 0, there exists someexX
such that d(x, m) 3.

Intuitively, a dense subset is “all over the place.” For every point of M, a point of the subset can be found as near as desired.
Definition: A grand tour implementation in R" is an algorithrﬁfor calculating an arbitrarily long sequencg P, ... of

2-planes irR" such that X = {R, P,, ...} is a dense subset 0bG

2.0 How grand tours work

The purpose of finding grand tours is to display multivariate data as an animation on a computer screen, allowing the observer
to detect patterns in the data. Here is the method that is usedLRY &present any finite set of multivariate data. Given a

grand tour implementatiory PP,, ..., we can now create an animation of S. First, we simply project S orthogonally onto each
2-plane R Now we need some way of identifying the 2-planevih the computer screen. For this purpose, we need to
choose, for each i, a 2-framg=F(v;, w;) such that span(f = R. Finally, we map the plane B the computer screen via a lin-

ear map that takes andw; to the x- and y-directions, respectivedy the computer screen.

The animation now comes from rapidly displaying on the computer screen the result of this procedure fori =1, 2, ... in turn. At
about 10 frames per second, the eye perceives motion; at 24 or more frames per second, the motion is perceived without
flicker.

If we have chosen thg Bnd the Fcarefully the result will be a smooth animation of the multivariate data contained in the set
S. Each point will appear to be moving on the computer screen along its own smooth trajadt@gints that are actually
near each other in S will follow trajectories that remain close to each other throughout the animation. Thefenamy dif
views of S dirded by the dense sequence of 2-planes w#k @n observer the opportunity to find patterns in S that may be
otherwise dificult to see.

FIGURE 1. Schematic view of 3 planes of a grand tour showing the data (a tetrahexlr) projected onto each plane.
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3.0 _The importance of continuity

Unless we are very careful to make our choices continuous, the animation just described will appear chaotic and will be of no
use to a human observéfreither the sequence of 2-planes is not continuous, or the choice of 2-frames is not continuous, then
the resulting grand tour implementation will fail to appear continuous. For this reason we refine our original definition of a
grand tour implementation as follows:

Definition: A grand tour in R"is a continuous family of 2-frames { F(t)<0t < « } such that the corresponding set
of 2-planes X = { span(F(t)), 8t < } is dense in G,

A grand tour will give rise to a grand tour implementation that appears continuous if we choose a sequence of parameter val-
ues 0 ={<t, <... approachingr and suficiently close to one anothdfor then the sequence of 2-planes given;by P

span(F@), i=1, 2, ... will be dense inG. In addition, the Pwill appear to vary continuousland the 2-frames FYtwill

give us a continuous way to map the image of the data that has been projected onto the pfangheRRomputer screen.

4.0 _Some geometry of the Grassmannian

The aim of this section is to describe geodesic curves in the Grassmann manjfdid e next section these curves will be
used to construct a particular grand tour

In this section P and Q denote any two 2-planes'joRin other words any two points in the Grassmann manifgld G

Terminology: A line in a 2-plane is a 1-dimensional linear subspace of the 2-plane. (In other words, it is an ordinary
straight line in the 2-plane that passes through the origin of the 2-plane.)

Definition: The first principal angle between two 2-planes P and {'iis Be smallest angle between any line in P

and any line in Q. The first principal directions between P and Q are the (usually unique) lines in P and Q that realize the first
principal angle.

Definition: The second principal directions between two 2-planes P and QareRhe lines in P and Q, respectively

that lie perpendicular to the first principal directions. The second principal angle between P and Q is the smallest angle formed
between the second principal directions.

Notation: The first and second principahgles will be denoted 84 and8,, respectively

Note that9, and8, will always satisfy the inequalities06, < 6, < 90°.

FIGURE 2. Schematic drawing shows principal angles between two 2-planes ifl.RIn RS the first principal angle
would necessarily be 0.)

Definition: The distance between P and Q (considered as two points of the Grassmann mapjfalitl Ge taken as
d(P, Q) :(912 + 922)1/2.



Note: Although we are couching this as a definition, in fact this is a consequence of the natural Riemannian met-
ricon G

Definition: A geodesic between any two points p and q of a Riemannian manifold M is a curve in M connecting p to
g, which locally minimizes distance.

Suppose that : [a,b] - M is a geodesic witki(a) = p andx(b) = q. Suppose we have anyfsiéntly fine partition of the
interval [a, b], say a i t; < ... <t,=b. Then the definition of geodesic means that for each i = 1,...,n, the curve

a : [t.1, ] - M will be the shortest of all curves in M connecton(_q) to a(t;).

Notation: Denote by SQthe group of k x k orthogonal matrices'J(Ac AY with determinant +1.

SQ is called the special orthogonal group dnaRd is just the group of rotations df.R

Definition: Suppose u and v are any two unit vectors'liHat are an anglless than 180apart. Then slerp(u, v; t)
(spherical interpolation) will denote the unique element of th@ executes a rotation in span(u, v) by angleund is the
identity on the complementary (n-2)-plaggpan (u, v)) 7,

Fact: Let P and Q be any two 2-planes &f Retu,; andv, denote unit vectors in the first principal directions of

P and Q respectivelizetu, andv, denote unit vectors in the second principal directions of P and Q, respe@wetjder the
one-parameter family of S@otations given by the concatenation

M (t) = derp (ug, vq;t)slerp (Uy, Vo t) = slerp (U, Vo, t) slerp (uy, vy t)
for 0<t< 1. Then the shortest Grassmannian geo%biﬂween Pand Q ingGis given bya : [0, 1] —» G, ,,via

a(ty =M@P
Of coursep(0) = P andx(1) = Q.

5.0 A Grassmann tour

We review the following methdd 2 13for creating grand tours: Start with an arbitrary 2-plane P'ifPRk at random a sec-
ond arbitrary 2-plane Q in"RIf uy, v4, U,, V5, are just as in the previous section, they{tM= slerp(, vq; t) slerp@s, vo; t)
defines a continuous 1-parameter family of rotations ip 3® above, the 2-planes;f)P, for 0< t< 1, clearly traverse the
geodesic from P to Q.

We attempt to iterate this process to obtain a grandRick a third 2-plane R iR" at random. W now do for Q and R the
same thing that we just did for P and Q, respectitalyus denote the resulting one-parameter family of rotations,{ty fdr
0<t< 1. Again, we have a geodesic in the Grassmannian between Q and R, giveft)@yféd O< t < 1. We then pick a
fourth 2-plane, S, at random and continue this procedure indefinitely to obtain a piecewise geodesic gynmichGeon-
nects the dots” (2-planes).

What we really need, though, is a curv@dfames whose underlying 2-planes are precisely the curve we have just described.
Fortunatelythe 1-parameter families;[#) of rotations irR" provide the means for this. Sincg(®) is the identity in S@for

each i, we may define a grand concatenation M of all ifedd follows: For any s= 0, let s = n + t, where n is a positive
integer and & t < 1. Then we define M(s) = Mt)M,.1(1)M5(1)...M(1)M4(1). It is easy to verify that this forms a continu-
ous curve of rotations in $Ofor all real == 0. Any 2-frame F fed into this “pipeline” leads to a continuous 1-parameter family
M(t)F of 2-frames whose underlying 2-planes, span(Ni(fidtm exactly the piecewise geodesic curve of 2-planes described
in the previous paragraph. Thus (with probability 1) we will have constructed a grand tour { Mt}Ris manner



Note that this method is implemented in XGobi software, avai‘i%bbeftp from Statlib at CMU.
Definition: A grand tour constructed in the fashion described above will be call&tdssmann tour

Notation: Let K denote any subset of M, and let S 1, §&,...} denote any sequence of points of M. Then #(K,S; n)
denotes the number of elements among, {m,...,m,} which lie in the subset K.

Definition: Let M denote a probability space (a measure space whose total measureeisdy.tiéat a sequence S =
{s1, $,...} in M is well-distributed in M if for all measurable subsets K of M, the limit as.re of #(K,S; n)/n is equal to the
measure of K.

Intuitively, this just says that the sequence S ultimately visits each part of M in proportion to its measure. A typical application
of this concept will be a compact manifold supplied with a measure such that every non-empty open set has positive measure.
Note that any well-distributed sequence on such a manifold must automatically be dense.

Note that as a compact Riemannian manifold, the Grassmangiais Gaturally a probability space (there is an essentially
unique measure, theniform distribution , arising from the intrinsic metric on,G). One particularly attractive quality of the
Grassmann tour described above is that by its construction, it can be shown to be well-distribyted e @dvantage of a
grand touts being well-distributed in &, is that the views seen on the screen will not prejudice the observer by lingering dis-
proportionately in one or another region of the Grassmannian. Instead they will give a true impression dievdrtldgiifds

of views of the data are possible.

6.0 From the Grassmann tour to the Stiefel tour

The Grassmann tour satisfies all the abstract requirements for a grand tour: continuity and denseness. In fact, much more hold:
true: the Grassmann tour is not only continuous but piecewise optimally smooth, a consequence of the piecewise geodesic
property In addition, this tour is not only dense in the Grassmannian, but well-distributed, a consequence of the independent
uniform distribution of each of the randomly-selected planes in its construction.

Yet, the Grassmann tour has a shortcoming: it is impossible to prescribe the orientations (i.e., rotational positions) in which the
visited planes are seen on the computer screen. This is not a surprise: the Grassmann tour only claims to interpolate 2-planes
not specific 2-frames. This is clear from the construction: if the starting frame in the starting plarta&highle ending frame

in the taget plane Q is M(1)FThis ending frame is uniquely determined b@)Pand F and is not subject to the viewgref-

erences. The construction of M(t) depends, of course, only on P and Q but not on F

This lack of control over specific 2-frames can be a problem in interactive implementations: grand tours are not very useful
unless they are embedded in a set of interactive tools that permit a viewer to manipulate projections generated by.a grand tour
Some basic manipulations include storage and retrieval of projections, and revisiting them at any given moment by steering
the grand tour back to them (not by backtracking but by direct interpolation). At this point, hatvisvessential that each

old projection be presented in the screen orientation in which the viewer saw it the first time around; otherwise it may not be
recognizable.

At other times, a viewer may wish to visit specific planes, such as the projection onto the first two variables. Since the screen
orientation of such a plane cannot be prescribed in the Grassmarm @rassmann geodesic will in all likelihood place the
variables in oblique screen orientations on the screen, rather than in the natural horizontal-vertical position.

Thus arises the need for schemes that permit interpolation of a sequence of specific frames rather than just planes. Althougt
the minimum requirements for a grand tour are satisfied by the Grassmatargeuimplementation and usability issues dic-
tate frame interpolation in some contexts.

Construction of the optimal frame interpolation is the subject of the remainder of thislpgpecise terms, we show how to
construct geodesics on the Stiefel manifold,Vather than on the Grassmanniaf, G



Stiefel geodesics can be used to construct an interpolating grand tour by choosing a sequence of Rftamdepandently

and at random. Call this sequente {F;, F,,...}. Now if we could only compute the geodesic of 2-framesp between

each successive pair of 2-framgsHg; in the sequence, we could “connect the dots” with Stiefel geodesics. Applying this
method, then, to each successive paiFE; will give us a continuous curve of 2-frames that is piecewise geodesic, threading
through each of the;5. This grand tour is what we call the Stiefel tour

7.0 _How to connect two 2-frames by Stiefel geodesics

This section will describe how to calculate the geodesicipbétween two 2-frames;fand F in R". (Of necessitythis sec-
tion will be more technical than the preceding.)

7.1 Reduction to 4 dimensions

First of all, we can simplify matters by restricting attention to the 4-dimensional subspddbalfiR generated by the two 2-

planes R = span(f) and B = span(k). (In the unlikely event that;Rand B generate only a 3- or 2-dimensional subspace, we

may choose any convenient 4-dimensional subspace that contains it.) By an orthogonal change of coordinates, we may assum
without loss of generality that this 4-dimensional subspace constitutes the first 4 coordiR&tesoofie shall call iR%. By

the change of coordinates, our 2-framesiid F, must in fact be 2-frames R?, i.e., points in \ 4 We may assume that this

change of coordinates has been chosen so that the 2-fjasordists of the first two standard basis vectoFs: = (g, &,).

7.2 _The klation between geodesics M7,A and geodesics irs0O,

The mathematical justification for the construction of Stiefel geodesics that we are about to give stems from the theory of Lie
groups. Hence we provide some statements that will allow the interested reader to link this material to Lie grc}ﬂ:_p theory
There is an important mapping p : $G V; 4 defined as follows. Let g be any element of,Sthen p(g) is the 2-frame

(9(ep), 9(e)). (Intuitively, p maps an orthogonal 4x4 matrix to the 2-frame consisting of its first two columnsy) X804

denote the subgroup of $€onsisting of those rotations Bf* which leave fixed the coordinate plane spar&). Then con-
sideration of the mapping p shows that\s in fact a coset manifold, that is, the result of factoring the groyp@®y this
subgroup 3x SG,. This is expressed by saying that \/= SQ;/ (1, x SOy).

ConsequentlySQ, may be viewed as a principal fibre burldlever the base space Ywith fibre SQ.

We can describe the structure of the fibres in greater detail. Let our second 2-ftaengi\fen by the ordered pair of vectors

(ug, uy). Using Gram-Schmidt orthogonalization, we may easily extend this to an ordered 4-tuple of orthonormal vectors,
(uq, Uy, Ug, Uy). (If we are unluckythe Gram-Schmidt process gives us a matrix that has determinant -1, but this is easily cor-
rected by replacing the last column with its negativee)rifdy view these;’s as columns of a special orthogonal matrix U
such that p(U) = & Thus, the matrices of S@hich project down to fby applying p are the matrices

Ue = (Ug, Uy, cos (0) u3+sin (6) Uy, -sin (8) u3+cos(6) u4)

for 0< 0 < 21t The set of these matrices forms one fibre of the fibre bundle, so it is topologically just a cirgje in SO
The usefulness of Stems from the fact that any Stiefel geodesic which starts=atdr, e;) and ends atf= (u4, u,) is the

image under p of some g@eodesic that starts at the identify=1(e;, &, €3, &) and ends at some specifig.IThe Stiefel
geodesic is obtained from that Sthat has the shortest length over all value of

We need to find the shortest geodesiaf V, 4 which connects the 2-frameg &nd F,. According to the previous paragraph,
we may determine by looking at geodesics “upstairs” in @s follows.



7.3 _Geodesics 50, and their normal forms

We need a few facts about §@aodesic’s1. For any square matrix M, denote by exp(M) the matrix exponential, which can be
defined in terms of the usual exponential power series.

Fact: Every element of SQis of the form exp(S), where S is a skew-symmetric matrix.
Note that this representation is not unique. Below we will see what the nature of this non-unigueness is.

Fact: If U =exp(S), S skew-symmetric, then the cum® = exp(tS) is a geodesic in g@at connects land
u.

4 4

z z slzj. (Here the s denote the elements of S.)

i=1j=1

This is also the so-called Frobenius norm of S. The matrix S is also called the “tangent vector “ or “Lie algebra element” for
the geodesia(t) at the starting poird(0) = 14. In fact, the derivative ad(t) att = 0 is just S.

Fact: The length of this geodesic is equal|t8|| =

Fact: By an orthogonal change of coordinates, any element U ph&® be put in the normal form N, where
cos (K) —sin(K) 0 0
N = sin (K) cos(K) 0 0
0 0 cos(L) —sin(L)
0 0 sin(L) cos(L)

The advantage of this normal form is that it is easy to determine a Lie algebra element S such that exp(S) =,1$. ihaynely
be chosen as the matrix

0-K 0 0
s-|K 000
0 00-L
0 0L O

Obviously the values of K and L are unigue only up to additive multiplestofvBence the non-uniqueness of the Lie algebra
elements S.

The squared norm of this matrix S is just the sum of the squares of its elements, thét-ﬁsl,za(ISince N = AlUA for some
orthogonal matrix A, it follows that U = ANA = Aexp(S)A® = exp(ASAY). Thus T = ASAl is a Lie algebra element such
that exp(T) = U.

Since conjugation by an orthogonal matrix leaves the norm of a matrix unchanged, it follows that the squared norm of T is also
2(K2 + L9).

7.4 Making sense of the above for the psent purpose

The relevance of the above for our problem is that we now know how to cast the problem of finding Stiefel geodesics in terms
of the shortest Spgeodesic from Jto each of the pJs. Our problem at this point is to determine how we can compute the
length of these Sggeodesics from the original matrixglhnd then find the value 8fwhich minimizes it.

If the above normal form is computed from e8¢bne obtains K = Kj) and L = L@). Hence also the squared length of a geo-
desic 2(I'\2 + L2) is a function 0B as well. This is the function that we need to minimize.



7.5 _The solution

The quantities K and L derived from the normal form are generally not easy to get at, unless one computes these normal forms
explicitly. The method for finding a solution to our problem is to circumvent normal forms by getting at easily computable
guantities of |4 that determine the Kf and L@) directly. These quantities are the traces gfddd its matrix square. Here is

how this works:

Notation: In what follows we shall denote cos(K) by @nd cos(L) by €.

Through an easy calculation and application of trigonometric identities, we get that
trace (N) = 2(CK +CL) and

trace (N?) = 2(cos (2K) +0os (2L)) = 4(CZ +C2-1)
Since conjugation by an orthogonal matrix leaves the trace unchanged, it follows thagjrad{@ + G ) and trace((g)z)

= 4(C 2+ CL2 - 1). Now we set the variable a = tracg)ldnd the variable b = trace(é}a). The resulting two equations and
two unknowns boil down to the quadratic equation

C?- (5)C+ (L-b-4/8=0
where C stands for eitheg@©r C_. Solving this quadratic equation, we obtain
C = (az 2b—a2+8 )/4
for Cx and G . Hence we may set
- oL §a+ A/2b4— a+8 é

K

1 5h-J2b-a2+8 0
and L = cos WE

where cod denotes inverse cosine. Consequentfy+KL?, which is half of the squared norm Z(k L?) of Ug, can be
expressed as

2 2
1 %+A/2b—a2+8 O 1 %—«/2b—a2+8 O
f(0) = | cos . 7] B + | COS . i B

Since a = trace(}) and b = trace((b)z) are easily calculated from the matriy, Whis expression for & may be evaluated
numerically for any value d@. We now numerically minimize &) over all® in the range & 6 < 21t

Let B, be the value o® which minimizes 1§). Substitutingd,i, for 6 in the matrix 4 we get a matrix that we shall call
Umnin- Now we know that the geodesic fromtt Uy, is the shortest S{@eodesic from 4to any element of S{hat projects

to the second 2-frame, By the mapping p. As above, we may make use of the normal fgfgfdd Uy, in order to deter-
mine the skew-symmetric matrix,}, such that exp(fin) = Unmin - Finally we can now express the shortest geodesic between
the original 2-frames fand k, asa(t) = p(exp(tT,iy) for 0st< 1.
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